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In this paper we study the question of existence of a basis consisting only of
cycles for the lattice Z(.#) generated by the cycles of a binary matroid .#. We show
that if .# has no Fano dual minor, then any set of fundamental circuits can be
completed to a cycle basis of Z(.#); moreover, for any one-element extension .#'
of such a matroid .#, any cycle basis for Z(.#) can be completed to a cycle basis
for Z(.#'). © 1999 Academic Press

1. INTRODUCTION

Let .# = (E, %) be a binary matroid on a (finite) set £ with cycle space
%; that is, ¢ is a family of subsets of E which is closed under taking sym-
metric differences, whose members are called the cycles of .#. The minimal
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nonempty cycles are called circuits; then every nonempty cycle is a disjoint
union of circuits. In this paper we consider the set

Z(.4) :={ Y ;tc)(CH.CEZVCE(g}.

Ce®%

The set Z(.#) is clearly a lattice (that is, a discrete subgroup of R%), called
the cycle lattice of .#; a basis of Z(.#) consisting only of cycles of .# is
called a cycle basis. Recall that a basis of a lattice L is a set B of linearly
independent vectors of L that generates L, i.e., such that every vector xe L
can be expressed as x=>, .5 A,b for some integers A,. As is well known,
a lattice generated by integral vectors admits a basis consisting only of
integral vectors (cf. [ 15, Chap. 4.1]). However, a generating set of a lattice
does not necessarily contain a basis of the lattice in general.

Hochstéttler and Loebl [ 7] conjectured that every cycle lattice admits a
cycle basis. This conjecture is, in fact, a special case of a more general
problem posed by Deza, Grishukhin and Laurent [2, 3] in the setting of
Delaunay polytopes (see below for details). Gallucio and Loebl showed the
validity of this conjecture for graphic matroids [4] and, more generally, for
binary matroids with no F¥ minor [5]. The proof given in [5] relies on
Seymour’s decomposition results for matroids with no F# minor [16].

In this paper we give a short and elementary proof for the fact that the
cycle lattice of a binary matroid with no F¥ minor has a cycle basis and
we show that the cycle lattice of a one-element extension of such matroid
also has a cycle basis. More precisely, we show that, if .# is a binary
matroid with no F¥ minor, then a cycle basis of Z(.#) can be obtained
from any set of fundamental circuits (thus a basis over GF(2)) by adding
some circuits that are the symmetric difference of two fundamental ones.
The main ingredient for this result is the fact that there exist two fundamen-
tal circuits of .# intersecting in exactly one element (cf. Theorem 2.2). If
' is a one-element extension of .#, then one can extend any cycle basis
of Z(.#) by an appropriate set of circuits of .#’ in order to obtain a cycle
basis of the cycle lattice of .#'. Moreover, in both cases we can construct
efficiently the above-mentioned cycle bases.

Although cycle bases can be constructed for some other specific instances
of matroids, e.g., for projective spaces and their duals, the question of exist-
ence of a cycle basis remains open for general binary matroids, even for the
binary matroids having the so-called lattice of circuits property (see below
for the definition). We will make some further observations concerning
these matroids in Remark 2.6.

The question of existence of a basis of a special kind has been considered
for other lattices generated by combinatorial objects, for instance, for the
lattice generated by the incidence vectors of the perfect matchings of a
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graph. This lattice has been studied extensively by Lovasz [8]; Carvalho
et al. [13] have shown that this lattice has a basis consisting only of perfect
matchings, answering a question posed by Murty [12].

In what follows, we introduce some definitions and preliminaries that are
needed in the paper. Our notation and terminology are fairly standard and
can be found, e.g., in the textbooks by Oxley [14] and Welsh [18]. We
will use the following notation: For a set 4 < E, we let y* e {0, 1} denote
its incidence vector, 1.e? y2:=1 if and only if ee 4. Moreover, for a finite
subset X < R® we set

Z(X) :={ Y lxxller\'/xeX}.

xekX

Definitions and Facts about Matroids. Let ./ =(E,€¢) be a binary
matroid. Setting

¢*:={D<SE:|DnCle2ZVCe%},

A* = (E, %) is also a binary matroid, called the dual of .#; the members
of ¢* are called the cocycles of .#. The minimal nonempty cocycles are
called the cocircuits of .#.

A set IS E is independent in .4 if it contains no circuit; the maximum
cardinality of an independent set is the rank of .#. Let T be a maximal
independent set in .#. For ee E\T, let C,e% denote the fundamental
circuit of e with respect to T; that is, C, is the unique circuit such that
eeC,cTu{e}.

An element e€ E is a coloop of ./ if {e} is a cocircuit and two distinct
elements e, fe E are said to be coparallel if {e, f} is a cocircuit. A
coparallel class P is a maximal subset of £ whose elements are pairwise
coparallel and are not coloops. The matroid .# is said to be cosimple if
every cocircuit has cardinality > 3.

The cycle space of a binary matroid .# on E can be realized as the set
of solutions xe{0,1}* of a linear equation of the form: Mx=0
(modulo 2), for some binary matrix M whose columns are indexed by E;
such matrix M is called a representation matrix of 4.

The Fano matroid F, is the matroid on E = {1, .., 7} represented by the
matrix

1 23 45 6 7
1 00 1 1 01
01 010 11
001 01 11
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and the Fano dual matroid is the dual F¥ of F,. For r =2, the projective
space #.is the binary matroid represented by the r x (2" — 1) matrix whose
columns are all nonzero 0, 1-vectors of length r; hence, 2 has rank r and
PA=F,.

Let .#Z =(E, ¢) be a binary matroid and let e € E. Setting

E\e :={Ce¥|e¢C}, Ele:={C\{e}|Ce®},

then .#\e:=(E\{e},%\e) and ./ /e:=(E\{e}, ¢/e) are binary matroids
obtained from .# by, respectively, deleting and contracting e. A minor of .4
is any binary matroid .4" that can be obtained from .# by a sequence of
deletions and/or contractions.

The Lattice of Circuits Property. Let .# =(E, ¥) be a binary matroid.
Then, the following holds obviously for all x e Z(.#):

Y x,is even for all cocircuits D e %*, (1.1)
eeD
Xp=X, if fand g are coparallel in .#, (1.2)
x,=0 if e is a coloop of .#. (1.3)

Following Goddyn [6], we say that .# has the lattice of circuits property'
if the above conditions (1.1)-(1.3) characterize Z(.#); that is, if any x e Z%
satisfying (1.1)—(1.3) belongs to Z(.#). As can easily be verified, .# has the
lattice of circuits property if and only if 2y” e Z(.#) for every coparallel
class P of ./#. Recall that the dual lattice of Z(.#) is given by

(Z(AM))* = {xe RE

Y xeeZ‘v’Ce%}.

eeC

Then, assuming .# cosimple, .# has the lattice of circuits property if and
only if (Z(.#))* is contained in $Z£. Note that F5 does not have the lattice
of circuits property since LyZe (Z(F#))*.

Cunningham [ 1] has proved that, if .# has no F¥ minor then, for every
element e, there exist two circuits C, C’ such that Cn C’' = {e} if and only
if every cocircuit containing e has cardinality > 3. This implies that every
binary matroid with no F¥ minor has the lattice of circuits property. Note
that Theorem 2.2 and Corollary 2.3 below can be seen as a variation of
Cunningham’s result. Lovdsz and Seress [10, 11] studied the lattice of

! This terminology reflects the analogy with the sums of circuits property considered by
Seymour [17], a binary matroid having the latter property if the cone generated by its cycles
is completely described by some “obvious necessary” linear conditions. Lovasz and Seress
[10] call a binary matroid .# Eulerian if its dual .#* has the lattice of circuits property.
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circuits property in detail. In particular, they have given several equivalent
characterizations for the binary matroids having the lattice of circuits
property and they have shown that, if ./ is cosimple with no 2}, ; minor,
then 2"~ 'ZE<c Z(.4).

The dimension of the cycle lattice Z(.#) is dim .# :=dim R(.#), the
dimension of the linear subspace spanned by Z(.#). In view of relations
(1.2) and (1.3) it is not more than the number of coparallel classes of .#.
Moreover, an easy induction on the size of the groundset shows that for
every coparallel class K< E there is a 0 <k e Z such that k- )5\ e Z(.4),
where E’ < E is the union of the coparallel classes of .#. This implies that
a certain positive multiple of y* belongs to Z(.#) and, therefore, dim .# is
in fact equal to the number of coparallel classes of .#. Furthermore, again
using relations (1.2) and (1.3), we may assume without loss of generality
that .# is cosimple, in which case Z(.#) is full-dimensional. We will often
use the observation that if # is a set of cycles of .# which generates the
lattice Z(.#) and has cardinality |#| =dim .#, then % is a basis of Z(.#).

The Basis Question for Delaunay Polytopes. Let P< R* be a full-dimen-
sional polytope with set of vertices Vp admitting the origin as a vertex.
Then, P is said to be a Delaunay polytope if it satisfies the following condi-
tions: (i) the set L :=Z(V ) is a lattice; (ii) P is inscribed on a sphere; that
is, |x—c| =r for all xe Vp, for some r>0 and ceR* with |c| =r; (iii)
|x—c| =r for all xe L, with equality if and only if xe V,. (Here, ||x|
denotes the Euclidean norm of x € R*.) Deza et al. [2, 3] posed the follow-
ing question:

Given a Delaunay polytope P, is it always possible to find a basis
of the lattice L = Z(Vp) consisting only of vertices of P?

No example of a Delaunay polytope is known for which this question has
a negative answer. On the other hand, a basis consisting only of vertices
has been constructed for several concrete instances of Delaunay polytopes
in [2]. In fact, the question of existence of a cycle basis for a cycle lattice
arises as a special instance of the above problem. Indeed, for a binary
matroid .# = (E, %), let conv(%) denote the polytope in R¥ defined as the
convex hull of the incidence vectors of the cycles of .#. Then, as we see
below, conv(%) is a Delaunay polytope in the lattice Z(.#).

LemMma 1.4. Let X be a finite full-dimensional subset of {0, 1}* and set
Y:=Z(X)n {0, 1}*. Then, the polytope conv(Y) is a Delaunay polytope.

Proof. The polytope P :=conv(Y) is full-dimensional in R* since X is
full-dimensional. Assertion (i) holds obviously since Y consists of integer
vectors. Let S denote the sphere in R* with center ¢ :=(3, ..., 3) and radius



30 FLEINER ET AL.

ri=1%/|El. Then all points of ¥ lie on the sphere S, ie. (ii) holds. We
have that (x—¢i? ==Y, pxix,~ 1} =0 for all xeZ(X) Moreover,
equality holds if and only if x € {0, 1}*, ie. if xe Y thus, (iii) holds. This
shows that P is a Delaunay polytope. §

Note that, with the notation of Lemma 14, it may happen that X is a
proper subset of Y. For such an example, let X consist of the unit vectors
in R* in which case Y=1{0, 1}* On the other hand, if X consists of the
incidence vectors of the cycles of a binary matroid  #, then equality Y=Y
holds. Indeed, the only (0, I})-vectors in the cycle lattice Z( #) are the
incidence vectors of cycles (which follows essentially from the fact that
(.#*)* = 4). (Note that the equality, Z{X) ~ {0, 1 }* = X for a finite subset
X< {0, 1}%, does not imply that X is closed under taking symmetric dif-
ferences, ie., X 18 not necessarily the cycle space of a binary matroid. For
a counterexample, consider the set X< {0, 1}* consisting of the vectors
(0,0,0,0, (L LLLO (L LO DL (LT, Dand (0,1, 1, 1))

CoOROLLARY 1.5, Ler # =(E, %) be a cosimple binary matroid. Then,
the polytope conv(¢) which is defined as the convex hull of the incidence
vectors of the cvcles of . is a Delaunay polytope.

2. CYCLE BASIS FOR MATROIDS WITH NO F¥ MINOR

We indicate here a very simple method for constructing a cycle basis of
the cycle lattice of any binary matroid with no F¥ minor. It consists of
extending a set of fundamental circuits (thus a basis over GF(2)) to a basis
of the cycle lattice by adding some circuits obtained as symmetric difference
of two fundamental circuits. This method can also be applied to some other
binary matroids, for instance, to projective spaces.

Let .# = (E, %) be a binary matroid, let T be a maximal independent set
in.#, set T:=FE\T and, for ee T, let C, denote its fundamental circuit. So,
|T|=rif # has rank r and r<|E] -2 if . # is cosimple. We start with an
easy observation.

LemMa 2.1, Ler </ be u set of vectors in ZE. If </ generates (over Z) the
Sfundamental circuits of a given maximal independent set T of ./ and the
vectors 23° (for ee T), then =/ generates all elements in Z(_#) and in 27%.

Proof. Let C be a cycle in M. Then, C is the symmetric difference of
the fundamental circuits C, for ee C~ T. Hence, X =y~ Y, conrx<is
an even vector (ie, xe2Z%) which is zero on T. Hence, xeZ(.</) by
the assumption which implies that y“eZ(./) too. Finally, for eeT,
o generates 2z° since 2y° =2y~ 2“7 |
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The following result will be the main tool for constructing a cycle basis.

THEOREM 2.2. Let .# be a cosimple binary matroid with no F¥ minor.
Let T be a maximal independent set in .# and assume that |T|=1. Then
there exist two fundamental circuits C and C' such that |Cn C'| = 1.

Proof. We begin with observing that, as .# is cosimple and the
fundamental circuits generate over GF(2) all cycles, then for any distinct
elements e, fe E there exists a fundamental circuit C such that |Cn {e, f}]
= 1. From this follows that there exist two distinct nondisjoint fundamen-
tal circuits. Let C, and C, (where x, y e T) be two fundamental circuits for
which C, nC, # & and |C, n C,| is minimum. If [C, nC,|=1 we are
done. Else, let e, fe C, nC,, e# f, and let C, be a fundamental circuit
such that |C,n{e, f}|=1; say, eeC,, f¢C,. Then, there exists an
element g e C, n (C,\C,) since, by our minimality assumption, C, " C, &
C,nC\{f}. Similarly, there exists an element e C, n(C,\C,). Set
X:=T\{x, y,z} and Y:=T\{e, 1. g h} and consider the matroid .#" :=
J#/\X]Y. Then, the circuits C,, C,, C, have the form

e f g h Y x y z X
c.,/1t 110 = 100 0---0
¢,/1101 = 01000
C,\1 01 1 = 001 0.0

Thus, {e, f, g, h} is a maximal independent set of .#’ with fundamental
circuits the sets {e, 1, g, x}, {e, £, h, ¥}, and {e, g, h, z}. Therefore, .4’
coincides with the Fano dual matroid F#, which contradicts our assump-
tion that .# has no F¥ minor. J

COROLLARY 2.3. Let ./ be a cosimple binary matroid with no F¥ minor.
Let T be a maximal independent set in 4 and assume that r:=|T|> L.
Then, the elements of T can be ordered as e, ..., e, in such a way that, for
every i=1,..,r, there exist two fundamental circuits C;, Cj such that
e;eCinCiciey, .. e}

Proof. We show the result by induction on the size of the groundset. By
Theorem 2.2, there exists an element ¢, € 7 and two fundamental circuits
C,, C} (with respect to .#, T) such that C; nC}={e,}. We are done if
|T| =1. Otherwise, we consider .#' :=.//e,. Then, T\{e,} is a maximal
independent set in .#’. Applying the induction assumption to .4’ which is
cosimple with no F* minor, we obtain that the elements of 7\{¢,} can be
ordered as e,, ..., ¢, in such a way that, for every i=2, .., r, there exist two
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fundamental circuits D, D} (with respect to .#’', T\{e,}) such that e; € D,
nD;c{e,, .., e;}. Then, D,=C\{e,}, Dj=Ci\{e,} where C,, C; are
circuits of .#. In fact, C;, C; are also fundamental circuits with respect to
T in .# as each of them contains a unique element of 7. Moreover, ¢; € C;
nCic{er, e e

An immediate application of Corollary 2.3 is that 2Z%< Z(.#) for any
cosimple binary matroid .# with no F#¥ minor; in other words, matroids
with no F¥ minor have the lattice of circuits property. We formulate below
further consequences.

COROLLARY 2.4. Let .# be a binary matroid with no F¥ minor, let P be
a coparallel class of .#, and let r denote the rank of M.

(1) The lattice Z(.#) has a basis consisting only of circuits of 4. Such
a basis can be obtained by extending the set of fundamental circuits of an
arbitrary maximal independent set by r circuits, each of them being the
symmetric difference of two fundamental circuits.

(i) There exist a circuit Cp and a set </ of circuits of .4 such that the
set of U{Cp} is a basis of the lattice Z(.#) and the set {C\P|Ce </} is
a basis of the lattice Z(.#|P).

Proof. We can assume without loss of generality that .# is cosimple.
We first verify (i). Let T be a maximal independent set in .# (|7]=r) and
let C, (ee T) denote the associated fundamental circuits. If » =0, then the
result is obvious as the fundamental circuits C,={e} (e€E) constitute a
cycle basis. We now assume that r > 1. Let T={ey, .., e¢,} and let C;, C; be
the fundamental circuits provided by Corollary 2.3. Then we consider the
set # consisting of the fundamental circuits C, (ee T) together with the
circuits C,,:=C;4C; (for e;eT). It follows from Corollary 2.3 that 4
generates 2y° for ee T. According to Lemma 2.1, this implies that #
generates all elements in Z(.#). Hence, # is a basis of Z(.#) since |%| =
|E| and, thus, (1) holds. We now verify (ii). As .# is cosimple, we have that
P:={p}.If { p} is a circuit, then .#/p = .4 \p and, thus, (ii) holds if we set
Cp:=C, and o :=2B\{Cp}, where # is the cycle basis of Z(.#) con-
structed above. Otherwise, we set again Cp:=C, and  :=#\{Cp},
where # is the basis constructed above after choosing for 7 a maximal
independent set of .# containing p. Observe moreover that the above
construction applied to matroid .#/p and its maximal independent set
T\{p} shows that the set {C\P | Ce </} is a basis of Z(.#/p). Hence, (ii)
holds. §

We close this section with some remarks on possible further applications
of the above construction method, as well as its limits and open questions.
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Remark 2.5. The Projective Spuce.  Recall that the projective space 2 is
the matroid defined on the set E:=GF2/\{0} whose cycles are the
linearly dependent (over GF(2)) subsets of E. As we now see, the construc-
tion method presented earlier in this section applies very easily for finding
a cycle basis of the lattice Z( #). Indeed. let T:={e,, ... ¢,} be a maximal
independent set in #,. We can suppose that r > 3 (else there is obviously a
basis of cycles). Then, every element ¢, € T is the intersection of two funda-
mental circuits. For instance, the two fundamental circuits {e,, e5, ¢, ® ¢}
and {e,.e;.¢; Dey} meet in ¢,. Therefore, the conclusion of Theorem 2.2
holds and, thus, the cycle lattice of # has a basis consisting of cycles.

Note that the above construction method does not apply to the Fano
dual matroid #¥ = F#. Indeed, the result from Theorem 2.2 does not hold
for F¥ since all pairwise intersections of its circuits have cardinality 2.
However, the technique from the next section will apply to the matroid F#
since F¥ is obviously a one-element extension of a matroid with no F¥
minor. In fact, the cycle lattice of F¥ and, more generally, of the dual .#*
of the projective space has obviously a cycle basis, since the nonempty
cycles of #* are linearly independent over R.

Remark 2.6. Matroids with the Lattice of Circuits Property. Let us note
again that the question of existence of a cycle basis for the cycle lattice
remains open for general binary matroids with the lattice of circuits
property. We mention here a possible way of attacking this question. Let

# =(E,%) be a cosimple binary matroid, let 7 be a maximal independent
subset of E, let C, (¢eT) be the corresponding fundamental circuits, and
let B denote the matrix whose rows are the incident vectors of the sets
C,nCytfor e, feT). Lovasz and Seress [ 10] have shown that .# has the
lattice of circuits property if and only if the matrix W has full column
rank |E| over GF(2). If we could find a set [ of pairs (e, f) (¢# feT) for
which the submatrix W, with rows C, (¢eT) and C, A C, ((e, f)e]) has
its determinant equal to 1, then the set {CeeT), C,4C (e, fYel)}
would be a cycle basis of Z({.#4). What we have shown in Corollary 2.3 is
that this goal of finding a submatrix W, with determinant 1 can be
achieved in the special case when # has no F# minor. Note that for
general matroids with the lattice of circuits property, by the above
mentioned result of Lovasz and Seress, there exists an index set / for which
the submatrix W', has its determinant equal to 1 modulo 2!

3. ONE-ELEMENT EXTENSIONS OF MATROIDS WITH
NO FANO DUAL MINOR

Given a binary matroid . # on a set E, a one-element extension of ./ is
any binary matroid .1 on Eu {r} (where 1 is an additional element not
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belonging to E) such that .4\t =.#. We show in this section that, if .# is
a matroid with no F¥ minor, then the cycle lattice of any one-element
extension of ./# also admits a cycle basis, obtained by extending any cycle
basis of the cycle lattice of .#.

One-element extensions can be described in the following manner. Let .#
be a binary matroid on E and let X be a subset of E. Call a set ACE
X-even (resp. Z-odd) if |[AnX| is even (resp. odd). Let My denote the
binary matroid on Eu {¢} (¢ is an additional element not belonging to E)
whose cycles are the cycles of .# and the sets (C A X)u {r}, where C is
a cycle of .#. Hence, the cocycles of .45 are the Z-even cocycles of .# and
the sets DU {¢} where D is a Z-odd cocycle of .#. Obviously, .#sx= ¢ p 5
for any cycle C of .#. Clearly, .#s\t =.# and any one-element extension
of .# is of the form ./ for an appropriate > < E.

It is useful to observe how the contraction operation applies to the one-
element extension matroid .#y; namely, ./ /f= (.4 /f)s\(s for any f€E.

When .# is a graphic matroid, the matroid .#y is also known under the
name of graft matroid (cf. [9, 16]); Goddyn [6] has posed the question
of describing the cycle lattice of graft matroids. Note that the Fano dual
matroid F¥ is, in fact, a graft matroid. Indeed, F¥ can be seen as a one-
element extension of the graphic matroid of the complete bipartite graph
K, 3, taking for X the set of edges adjacent to a given node of degree 3.
Hence, the results of this section apply for constructing a cycle basis of
Z(F¥). Moreover, this example shows that the one-element extension of a
matroid with the lattice of circuits property does not need to have this
property. We will give in Corollary 3.2 a characterization of the one-
element extensions of matroids with no F¥ minor having the lattice of
circuits property.

THEOREM 3.1. Let .4 be a binary matroid on E with no F¥ minor, let
X< E and let 45 be the corresponding one-element extension of /. Then
every cycle basis %, of Z(.#') can be extended to a cycle basis B of Z(.#s);
moreover, if all members of B, are circuits then the same can be assumed
about A.

Proof. We begin with noting that it suffices to show the result for one
specific basis of Z(.#); indeed, if #, and #', are two bases of Z(.#) and
if %5 is a set of cycles of .. for which B, U %5 is a basis of Z(.#s), then

3 v U Bs to0 is a basis of Z(.#s). Moreover, we can assume that %y
consists only of circuits, as for each cycle Ce #y there is a unique circuit
C' = C such that re C' and %% :={C": Ce #5} has the same property as
#By.. Thus we fix a basis £ , of Z(.#) consisting only of circuits (it exists
by Corollary 2.4). We show that we can find a set of circuits of .45 which
together with %4, forms a basis of Z(.#s). The proof is by induction on
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|E|. As observed earlier, we may assume without loss of generality that the
matroid ./% is cosimple. Hence, .# has no coloop, but .# may contain
some cocircuits of size 2, all of them being Z-odd. Therefore, every
coparallel class P of ./# satisfies [P n 2| <1 and |P\Z| < 1. We distinguish
the following two cases.

Case 1. All coparallel classes of .# have cardinality 2. Then, the set
B=RBy 0{(CADYU{1} |CeB,}u{Zu{t}}

is a cycle basis of Z(.#s). Indeed, as # has the right cardinality, it suffices
to verify that it generates all cycles of .#5. For this, let C be a cycle of .#;
then

ZC= z j‘BXB?

Be&y

where the ip’s are integers. Therefore,

X(CAZ')U{I}= Z }LBX(BAZ)U{I}+<1— Z AB)XZU{I}

Bea, Be®,
belongs to Z(#).

Case 2. .# has a coparallel class P:={p} of cardinality 1. By
Corollary 2.4, there exist a circuit Cp and a set </ of circuits of .# such
that B, :=./ U {C,} is a basis of Z(.#) and /' :=={A\P|Ade/} is a
basis of Z(.#/p). By the induction assumption applied to matroid .#/p,
there exists a set &’ of circuits of (.#/p)s\(,, = .#x/p such that &/ L Z" is
a basis of Z(.#x/p). For each D' e %', let D be a circuit of .#Zxs such that
D\{p}=D" and set ¥:={D|D'e%'}. We claim that the set #:=
/U2 u{Cp} is a basis of the lattice Z(.#y). As # has the right car-
dinality, it suffices to verify that # generates all cycles of .#5. Let C be a
cycle of /.. Then, the set C\{p} is a cycle of .#s/p and thus is generated
by /' U Z’. From this follows that y<+ Ay? is generated by .« U2 for
some integer 4. If 1 is even, then Ay’ is generated by .« U { Cp} since .#
has the lattice of circuits property; otherwise, { p} is a circuit and Cp={p}.
Hence, x is generated by & in both cases. [

It follows from a result of Lovasz and Seress [ 11] that 4Z%% (% c Z(.#y)
if .4y is a (cosimple) one-element extension of a matroid .# with no F¥
minor. The next result characterizes when .#5 has the lattice of circuits
property.

COROLLARY 3.2. Let .# be a matroid on E with no F¥ minor and let 5.
be a one-element extension of .#. Then, s does not have the lattice of
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circuits property if and only if there exist elements e, ..., ex, f1, . fr €E
(k = 3) such that the set {ey, .., e} is a cocircuit of .« while the sets {e,, f;}
(i=1, .., k) are Z-odd cocircuits of ..

Proof. Suppose first that such cocircuits exist; we show that .#x does
not have the lattice of circuits property by constructing a vector
xe1zE 172 {3 belonging to the dual lattice (Z(.#x))*. For this, set
x(e)=x(f)=1(i=1,..,k), x(t):=0, 3,1 Lif k is congruent to 0, 1, 2, 3
modulo 4, respectively, and x(e) :=0 for all remaining elements e E. We
show the converse implication by induction on the size of E. Assume that
s does not have the lattice of circuits property. We can suppose without
loss of generality that .#s is cosimple. We distinguish again the two cases
considered in the proof of Theorem 3.1.

Consider first Case 1; that is, E={ey, f1, . €m> frn}» Z=1{€1, s €p}
and {e,, f;} is a Z-odd cocircuit of .# for every i=1, .., m. Then, m >3 for,
if not, then .#s is a matroid on <5 elements and thus has the lattice of
circuits property. We claim that the set X contains a cocircuit of ..
Indeed, if X' contains no cocircuit of .#, then 2 is independent in the dual
AM* of .#. Moreover, X is maximal independent in .#* since Z U {f;}
contains a cocircuit for all i <m. Therefore, E\Z is maximal independent
in .# with associated fundamental circuits the sets {e;, f;} (i=1, .., m).
Then, one can easily verify that 2Z#v{} = Z(./y) and thus .# has the
lattice of circuits property. Therefore, 2 contains a cocircuit. Such cocircuit
has cardinality >3 since .# is cosimple and, thus, we are done.

Consider now Case 2; that is, .# has a coparallel class { p} of cardinality
1. We claim that .#5/p does not have the lattice of circuits property. For,
suppose that .#s/p has the lattice of circuits property; then we show that
s too has the lattice of circuits property. Indeed, 2y? € Z(.M) < Z( . My);
for ee E\{p}, 2x°€Z(.4yx/p) which implies that 2y®+ Ay? e Z(.#y) for
some integer 1 and, thus, 2y® € Z(.45); finally, 2y" = 2% — 2y % e Z(.ily).
Using the induction assumption applied to .#/p, there exist elements e,
Sis s €, fr€ EN{p} (k=3) such that {e,, .., ¢} is a cocircuit of .#/p and
every {e;, f;}1a Z-odd cocircuit of .#/p. Hence, we have found the desired
cocircuits of .# and we are done. |

We conclude this section with an observation on the limits of local
constructions. It has been observed in [7] that, given a cycle basis of the
cycle lattice of a contraction minor .#/e of a binary matroid .#, it is in
general not possible to extend it to a cycle basis of the cycle lattice of .#.
We now give an example showing that the same holds if we are given a
cycle basis of a deletion minor .#\e of ..

LemMMA 3.3. Let .4 be a cosimple binary matroid on E and let e E.
Assume that U has the lattice of circuits property and that .#\e does not
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have the lattice of circuits property. Then any cycle basis for Z(.#) must
have at least two cycles containing e. Therefore, if .#/\e is cosimple, then no
cycle basis of Z(.#) exists that contains a cycle basis of Z(.#\e).

Proof. By the assumption, there exists a coparallel class P in .#\e such
that 2y” e Z(.#)\Z(.#\e). This implies that any cycle basis of Z(.#) must
contain at least two cycles containing the element e. [

As an example of a matroid satisfying the conditions of Lemma 3.3,
consider the matroid Sg on the set {e,, .., s} represented by the matrix

e] 62 83 34 6’5 €g 67 eg

1 0 0 0 1 1 1 1
01 0 1 0 0 1
6001 0 0 1 0 1
0 0 0 1 0 0 1 1

Then, Ss\e, ~ F¥, both F# and S, are cosimple, and S; has the lattice of
circuits property while F¥* does not have it. To see that Sg has the lattice
of circuits property, one can note that Sy is, in fact, a graft matroid and use
Corollary 3.2. Indeed, S5 is the graft matroid of the graph from Fig. 1
taking 2 :={e,, e,, e5, e,} labeling the edges 15, 25, 35, 45, 12, 13, 14 as
e, ..., e7, respectively, and the additional element 7 as eg). Therefore, Sy
admits a cycle basis by Theorem 3.1. (Alternatively, one can note that the
set T':={e,, e,, €3, €4} is a maximal independent set in Sy and that the
pairwise intersections of fundamental circuits are the sets {e,} and {e,, e}
for i=2,3,4. This argument shows that Sg has the lattice of circuits
property and that a cycle basis for Z(Sg) can be constructed by applying
the technique from Section 2.)

FIG. 1. The matroid S is a graft.
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